動力學
動力學(Dynamics)是理論力學的一個分支學科,主要研究作用于物體的力與運動的關(guān)系。它主要研究運動速度遠小于光速的宏觀物體,是物理學和天文學的基礎(chǔ),同時也是許多工程學科的基礎(chǔ)。許多數(shù)學上的進展也與解決動力學問題有關(guān),使得數(shù)學家對動力學產(chǎn)生了濃厚興趣。

動力學的研究對象是物理系統(tǒng),由于力的作用,這些系統(tǒng)會發(fā)生怎樣的變化。動力學的基礎(chǔ)定律是艾薩克· 牛頓提出的牛頓運動定律。對于任何物理系統(tǒng),只要了解其作用力的性質(zhì),就可以引用牛頓運動定律來研究這些作用力對于物理系統(tǒng)的影響。
在經(jīng)典電磁學中,動力學涉及經(jīng)典力學和電磁學,需要使用 牛頓運動定律、馬克士威方程式和勞侖茲力方程式來描述。作為機械工程和航空工程的基礎(chǔ)課程,動力學對于這些學科的發(fā)展具有重要意義。
概況簡介 編輯本段
動力學的研究以牛頓運動定律為基礎(chǔ);牛頓運動定律的建立則以實驗為依據(jù)。動力學是牛頓力學或經(jīng)典力學的一部分,但自20世紀以來,動力學又常被人們理解為側(cè)重于工程技術(shù)應(yīng)用方面的一個力學分支。
動力學的基本內(nèi)容包括質(zhì)點動力學、質(zhì)點系動力學、剛體動力學,達朗伯原理等。以動力學為基礎(chǔ)而發(fā)展出來的應(yīng)用學科有天體力學、振動理論、運動穩(wěn)定性理論、陀螺力學、外彈道學、變質(zhì)量力學以及正在發(fā)展中的多剛體系統(tǒng)動力學等(見振動,運動穩(wěn)定性,變質(zhì)量體運動,多剛體系統(tǒng))。
質(zhì)點動力學有兩類基本問題:一是已知貭點的運動,求作用于質(zhì)點上的力,二是已知作用于質(zhì)點上的力,求質(zhì)點的運動,求解第一類問題時只要對質(zhì)點的運動方程取二階導數(shù),得到質(zhì)點的加速度,代入牛頓第二定律,即可求得力;求解第二類問題時需要求解質(zhì)點運動微分方程或求積分。所謂質(zhì)點運動微分方程就是把運動第二定律寫為包含質(zhì)點的坐標對時間的導數(shù)的方程。
動力學普遍定理是質(zhì)點系動力學的基本定理,它包括動量定理、動量矩定理、動能定理以及由這三個基本定理推導出來的其他一些定理。動量、動量矩和動能(見能)是描述質(zhì)點、質(zhì)點系和剛體運動的基本物理量。作用于力學模型上的力或力矩與這些物理量之間的關(guān)系構(gòu)成了動力學普遍定理。二體問題和三體問題是質(zhì)點系動力學中的經(jīng)典問題。
剛體區(qū)別于其他質(zhì)點系的特點是其質(zhì)點之間距離的不變性。推述剛體姿態(tài)的經(jīng)典方法是用三個獨立的歐拉角。歐拉動力學方程是剛體動力學的基本方程,剛體定點轉(zhuǎn)動動力學則是動力學中的經(jīng)典理論。陀螺力學的形成說明剛體動力學在工程技術(shù)中的應(yīng)用具有重要意義。多剛體系統(tǒng)動力學是20世紀60年代以來由于新技術(shù)發(fā)展而形成的新分支,其研究方法與經(jīng)典理論的研究方法已有所不同。
發(fā)展簡史 編輯本段
宇宙觀
哥白尼和開普勒的宇宙觀
力學的發(fā)展,從闡述最簡單的物體平衡規(guī)律,到建立運動的一般規(guī)律,經(jīng)歷了大約二十個世紀。前人積累的大量力學知識,對后來動力學的研究工作有著重要的作用,尤其是天文學家哥白尼和開普勒的宇宙觀。
始于17世紀
17世紀初期,意大利物理學家和天文學家伽利略用實驗揭示了物質(zhì)的慣性原理,用物體在光滑斜面上的加速下滑實驗,揭示了等加速運動規(guī)律,并認識到地面附近的重力加速度值不因物體的質(zhì)量而異,它近似一個常量,進而研究了拋射運動和質(zhì)點運動的普遍規(guī)律。伽利略的研究開創(chuàng)了為后人所普遍使用的,從實驗出發(fā)又用實驗驗證理論結(jié)果的治學方法。
17世紀,英國大科學家牛頓和德國數(shù)學家萊布尼茲建立了的微積分學,使動力學研究進入了一個嶄新的時代。牛頓在1687年出版的巨著《自然哲學的數(shù)學原理》中,明確地提出了慣性定律、質(zhì)點運動定律、作用和反作用定律、力的獨立作用定律。他在尋找落體運動和天體運動的原因時,發(fā)現(xiàn)了萬有引力定律,并根據(jù)它導出了開普勒定律,驗證了月球繞地球轉(zhuǎn)動的向心加速度同重力加速度的關(guān)系,說明了地球上的潮汐現(xiàn)象,建立了十分嚴格而完善的力學定律體系。
動力學以牛頓第二定律為核心,這個定律指出了力、加速度、質(zhì)量三者間的關(guān)系。牛頓首先引入了質(zhì)量的概念,而把它和物體的重力區(qū)分開來,說明物體的重力只是地球?qū)ξ矬w的引力。作用和反作用定律建立以后,人們開展了質(zhì)點動力學的研究。
牛頓的力學工作和微積分工作是不可分的。從此,動力學就成為一門建立在實驗、觀察和數(shù)學分析之上的嚴密科學,從而奠定現(xiàn)代力學的基礎(chǔ)。
牛頓定律發(fā)表100年后,法國數(shù)學家拉格朗日建立了能應(yīng)用于完整系統(tǒng)的拉格朗日方程。這組方程式不同于牛頓第二定律的力和加速度的形式,而是用廣義坐標為自變量通過拉格朗日函數(shù)來表示的。拉格朗日體系對某些類型問題(例如小振蕩理論和剛體動力學)的研究比牛頓定律更為方便。
牛頓第二定律
剛體的概念是由歐拉引入的。18世紀瑞士學者歐拉把牛頓第二定律推廣到剛體,他應(yīng)用三個歐拉角來表示剛體繞定點的角位移,又定義轉(zhuǎn)動慣量,并導得了剛體定點轉(zhuǎn)動的運動微分方程。這樣就完整地建立了描述具有六個自由度的剛體普遍運動方程。對于剛體來說,內(nèi)力所做的功之和為零。因此,剛體動力學就成為研究一般固體運動的近似理論。
1755年歐拉又建立了理想流體的動力學方程;1758年伯努利得到關(guān)于沿流線的能量積分(稱為伯努利
方程);1822年納維得到了不可壓縮性流體的動力學方程;1855年法國希貢紐研究了連續(xù)介質(zhì)中的激波。這樣動力學就滲透到各種形態(tài)物質(zhì)的領(lǐng)域中去了。例如,在彈性力學中,由于研究碰撞、振動、彈性波傳播等問題的需要而建立了彈性動力學,它可以應(yīng)用于研究地震波的傳動。
正則方程
19世紀英國數(shù)學家漢密爾頓用變分原理推導出漢密爾頓正則方程,此方程是以廣義坐標和廣義動量為變量,用漢密爾頓函數(shù)來表示的一階方程組,其形式是對稱的。用正則方程描述運動所形成的體系,稱為漢密爾頓體系或漢密爾頓動力學,它是經(jīng)典統(tǒng)計力學的基礎(chǔ),又是量子力學借鑒的范例。漢密爾頓體系適用于攝動理論,例如天體力學的攝動問題,并對理解復雜力學系統(tǒng)運動的一般性質(zhì)起重要作用。
拉格朗日動力學和漢密爾頓動力學所依據(jù)的力學原理與牛頓的力學原理,在經(jīng)典力學的范疇內(nèi)是等價的,但它們研究的途徑或方法則不相同。直接運用牛頓方程的力學體系有時稱為矢量力學;拉格朗日和漢密爾頓的動力學則稱為分析力學。
內(nèi)容詳述 編輯本段
動力學的基本內(nèi)容包括質(zhì)點動力學、質(zhì)點系動力學、剛體動力學、達朗貝爾原理等。以動力學為基礎(chǔ)而發(fā)展出來的應(yīng)用學科有天體力學、振動理論、運動穩(wěn)定性理論,陀螺力學、外彈道學、變質(zhì)量力學,以及正在發(fā)展中的多剛體系統(tǒng)動力學、晶體動力學等。
兩個抽象模型
質(zhì)點和質(zhì)點系。質(zhì)點是具有一定質(zhì)量而幾何形狀和尺寸大小可以忽略不計的物體。
兩類基本內(nèi)容
質(zhì)點動力學有兩類基本問題:一是已知質(zhì)點的運動,求作用于質(zhì)點上的力;二是已知作用于質(zhì)點上的力,求質(zhì)點的運動。求解第一類問題時只要對質(zhì)點的運動方程取二階導數(shù),得到質(zhì)點的加速度,代入牛頓第二定律,即可求得力;求解第二類問題時需要求解質(zhì)點運動微分方程或求積分。
剛體
剛體的特點是其質(zhì)點之間距離的不變性。多剛體系統(tǒng)動力學是20世紀60年代以來,由于新技術(shù)發(fā)展而形成的新分支,其研究方法與經(jīng)典理論的研究方法有所不同。
達朗貝爾原理
達朗貝爾原理是研究非自由質(zhì)點系動力學的一個普遍而有效的方法。這種方法是在牛頓運動定律的基礎(chǔ)上引入慣性力的概念,從而用靜力學中研究平衡問題的方法來研究動力學中不平衡的問題,所以又稱為動靜法。
主要應(yīng)用 編輯本段
對動力學的研究使人們掌握了物體的運動規(guī)律,并能夠為人類進行更好的服務(wù)。例如,牛頓發(fā)現(xiàn)了萬有引力定律,解釋了開普勒定律,為近代星際航行,發(fā)射飛行器考察月球、火星、金星等等開辟了道路。
自20世紀初相對論問世以后,牛頓力學的時空概念和其他一些力學量的基本概念有了重大改變。
實驗
結(jié)果也說明:當物體速度接近于光速時,經(jīng)典動力學就完全不適用了。但是,在工程等實際問題中,所接觸到的宏觀物體的運動速度都遠小于光速,用牛頓力學進行研究不但足夠精確,而且遠比相對論計算簡單。因此,經(jīng)典動力學仍是解決實際工程問題的基礎(chǔ)。
在目前所研究的力學系統(tǒng)中,需要考慮的因素逐漸增多,例如,變質(zhì)量、非整、非線性、非保守還加上反饋控制、隨機因素等,使運動微分方程越來越復雜,可正確求解的問題越來越少,許多動力學問題都需要用數(shù)值計算法近似地求解,微型、高速、大容量的電子計算機的應(yīng)用,解決了計算復雜的困難。
目前動力學系統(tǒng)的研究領(lǐng)域還在不斷擴大,例如增加熱和電等成為系統(tǒng)動力學;增加生命系統(tǒng)的活動成為生物動力學等,這都使得動力學在深度和廣度兩個方面有了進一步的發(fā)展。
主要學科 編輯本段
靜力學、流體力學、分析力學、運動學、固體力學、材料力學、復合材料力學、流變學、結(jié)構(gòu)力學、彈性力學、塑性力學、爆炸力學、磁流體力學、空氣動力學、理性力學、物理力學、天體力學、生物力學、計算力學、物理學、力學、熱學、光學、聲學、電磁學、核物理學、固體物理學。
相關(guān)研究 編輯本段
動力學研究與控制DynamicalSystemsandControl是一本關(guān)注動力系統(tǒng)與控制領(lǐng)域最新進展的國際中文期刊,由漢斯出版社發(fā)行。主要刊登動力系統(tǒng)控制理論及動力系統(tǒng)控制工程方面的最新技術(shù)就研究成果報道。本刊支持思想創(chuàng)新、學術(shù)創(chuàng)新,倡導科學,繁榮學術(shù),集學術(shù)性、思想性為一體,旨在為了給世界范圍內(nèi)的科學家、學者、科研人員提供一個傳播、分享和討論動力系統(tǒng)與控制領(lǐng)域內(nèi)不同方向問題與發(fā)展的交流平臺。
研究領(lǐng)域
動力系統(tǒng)與控制
非線性系統(tǒng)控制理論
動力系統(tǒng)的建模、仿真
動力系統(tǒng)穩(wěn)定性分析
動力系統(tǒng)的運動規(guī)劃與自主控制
動力系統(tǒng)的魯棒控制
隨機系統(tǒng)控制
力學系統(tǒng)幾何控制理論
多耦合約束運動體動力學與控制
多動力系統(tǒng)的協(xié)同控制
多智能體群體動力學
復雜力學系統(tǒng)結(jié)構(gòu)動力學、振動與控制
運載工具系統(tǒng)動力學與控制
機器人系統(tǒng)動力學與控制
航天器結(jié)構(gòu)動力學與控制
航天器姿態(tài)、軌道動力學與控制
飛行動力學與控制
水面、水下航行器動力學與控制
機、電動力系統(tǒng)控制與優(yōu)化
機、電系統(tǒng)的故障診斷與容錯控制。
附件列表
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。